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Abstract

This paper presents an extension of the energy momentum conserving algorithm, developed by the authors for

hypoelastic constitutive models. For such a material, contrarily to hyperelastic models, no potential can be defined, and

thus the conservation of the energy is ensured only if the elastic work of deformation can be restored by the scheme. In a

previous paper, we proposed a new expression of internal forces at the finite element level which is shown to verify this

property. We also demonstrated that the work of plastic deformation is positive and consistent with the material model.

In this paper, the second order terms that were neglected in the previous work are now taken into account. Several

numerical applications are presented to demonstrate the necessity of taking these terms into account once large time

step sizes are used. The limitations of the Newmark algorithm in the non-linear range are also illustrated.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Energy–momentum conserving; Dynamics; Hypoelastic constitutive model; Large strain plasticity; Finite elements
1. Introduction

One can resort to two families of algorithms to integrate the equations of evolution of dynamical sys-

tems: the implicit family and the explicit family. In this paper, we focus on the implicit family. The most

widely used implicit algorithm is the Newmark (1959) algorithm (see also Belytschko and Hughes, 1983;

Hughes, 1987; Belytschko et al., 2000). For linear models, this algorithm is unconditionally stable if some

conditions on the parameters are verified. For non-linear models, Belytschko and Schoeberle (1975) and

Hughes (1977) proved that the discrete energy is bounded if it remains positive. Nevertheless, Hughes et al.

(1978), Simo et al. (1992) and Kane et al. (2000) have proved that, in the non-linear range, the Newmark
algorithm remains stable only for small time step sizes. Moreover, for a step between times tn and tnþ1, the

angular momentum is conserved between the times tn�1
2
and tnþ1

2
but not between the times of computation tn
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and tnþ1 (Simo et al., 1992). To avoid divergence due to the numerical instabilities, numerical damping was

thus introduced, leading to the generalized-a methods (Belytschko and Hughes, 1983; Hughes, 1987;

Belytschko et al., 2000; Chung and Hulbert, 1993; G�eeradin and Cardona, 2000). Nevertheless, the un-

conditional stability of these methods can be proved only for linear systems. Another method is to set the
Newmark parameters so as to dissipate energy (Ponthot, 1995). But these techniques have the disadvantage

to also damp the physical modes, leading to a lack of accuracy. Therefore a new kind of dynamics inte-

gration algorithms has appeared that verify the mechanical laws of conservation (i.e. conservation of linear

momentum, angular momentum and total energy) and that remain stable in the non-linear range.

To demonstrate the stability, these new algorithms were not studied on a linear system as the previous

ones, but on the non-linear elements under considerations. The first algorithm verifying these properties

was described by Simo and Tarnow (1992) and Simo and Gonzalez (1994). They called this algorithm

Energy Momentum Conserving Algorithms or EMCA. It consists in a mid-point scheme with an adequate
evaluation of the internal forces. This adequate evaluation was given for a Saint Venant–Kirchhoff

hyperelastic material. This scheme was further extended to shells by Simo and Tarnow (1994), Zhong and

Crisfield (1998), Kuhl and Crisfield (1999) and Sansour et al. (2002), and was extended to mixed finite shells

by Miehe and Schr€ooder (2001). It was also extended to rods by Romero and Armero (2002b), to composite

laminates by Brank (2002) and to multi-body dynamics by G�eeradin and Cardona (2000) and Briseghella

et al. (1999). A generalization to other hyperelastic models was given by Laursen and Meng (2001), who

iteratively solve a new equation for each Gauss point to determine the adequate second Piola–Kirchhoff

stress tensor. Another solution that avoids this iterative procedure leads to a general formulation of the
second Piola–Kirchhoff stress tensor, as given by Gonzalez and Simo (1996) and Gonzalez (2000). This

formulation is valid for general hyperelastic materials. The EMCA was recently extended to dynamic finite

deformation plasticity by Meng and Laursen (2001, 2002). In such a formulation, the algorithm remains

energy conserving when no plastic deformation occurs, and ‘‘dissipates energy in a manner consistent with

the physical model in use’’ (sic) when plastic deformation occurs.

In the same context, for contact treatment, a penalty method was developed to simulate non-frictional

and frictional contact interactions by Armero and Pet€oocz (1998, 1999). This method allows surface pene-

tration but ensures conservation of the energy for frictionless problems and consistent dissipation for
frictional ones. Laursen and Chawla (1997), Chawla and Laursen (1998) and Laursen (2002) developed an

alternative method to simulate non-frictional and frictional contact. This method, that also allows surface

penetration, is unconditionally dissipative (even for the frictionless problems) for the penalty and augmented

Lagrangian method. The unconditional dissipation allows the method to be stable. More recently, Laursen

and Love (2002) extended these methods for frictionless contact, with the use of a contact velocity correction

that imposes the geometric admissibility and leads to a conserving algorithm. The use of a contact potential

was also proposed by Goicolea and Garcia Orden (2000) to simulate the frictional contact. Finally, these

contact methods were used in the context of quasi-rigid bodies (small deformations added to a rigid
transformation), such as gear trains, by Demkowicz and Bajer (2001) and Bajer and Demkowicz (2002).

Independently of contact, to avoid the lack of convergence due to the presence of high frequency modes,

numerical dissipation was introduced in the conserving algorithms (hyperelastic materials) by Armero and

Romero (1999, 2001a,b) and Romero and Armero (2000, 2002a). This algorithm preserves the angular

momentum, contrarily to the generalized-a algorithms and is called Energy Dissipative Momentum Con-

serving algorithm or EDMC. This scheme could be second order accurate by the introduction of new re-

lations, leading to twice more equations. This EDMCmethod was extended to beams by Ibrahimbegovic and

Mamouri (2002). Another solution to verify all conservation equations is to use the generalized-amethod or
the EDMC algorithm, but to augment these algorithms with energy and momentum constraints (Hughes

et al., 1978; Kuhl and Crisfield, 1999; Kuhl and Ramm, 1996, 1999). This solution is called either Constraint

EnergyMomentumAlgorithm (CEMA) in the first case orModified Energy–MomentumMethod (MEMM)

in the second case. In such an augmented method, the dissipated energy of the high frequency modes is added
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to the energy of the low frequency modes. Let us note that in these works (Kuhl and Crisfield, 1999; Kuhl and

Ramm, 1996, 1999), the velocity dissipation introduced later by Armero and Romero (1999, 2001a,b) and

Romero and Armero (2000, 2002a) to dissipate the high frequency is not present.

Finally, the properties of conservation can be reached, as proposed by Betsch and Steinmann (2000a,b,
2001), by using a Petrov–Galerkin finite element method. Graham et al. (2002) have proved that this

method is equivalent to the Simo and Gonzalez (1994) one, if some conditions are respected. Bauchau and

Theron (1996) and Bottasso and Borri (1997) developed a stable conserving (Energy Preserving) and dis-

sipative (Energy Decaying) method, for the simulation of non-linear beams, by the use of an approximation

of, respectively, the time Galerkin method and the time discontinuous Galerkin method. This approxi-

mation consists in the transformation of the Galerkin time integral into a finite difference. These algorithms

(Preserving and Decaying) were extended to non-linear elasto-dynamics by Bauchau and Joo (1999). Let us

note that the Preserving scheme is second order accurate and is similar to Simo and Tarnow (1992). The
Decaying scheme, is third order accurate but requires to solve twice more equations and cannot be modified

to control the dissipation. Another Energy Preserving/Decaying algorithm can be obtained with a Runge–

Kutta method. This method was used to compute non-linear beams by Bottasso and Borri (1998) and to

compute multi-body dynamics by Borri et al. (2001) and Bottasso et al. (2001). These two methods (first one

based on Galerkin method, and second one based on a Runge–Kutta method) were unified by Bauchau and

Bottasso (1999) for multi-body dynamics. This unification leads to the use of finite difference approxi-

mation of the Galerkin method (Energy Preserving) or of the time discontinuous Galerkin method (Energy

Decaying) to simulate shells, cables and beams dynamics (Bauchau et al., 2002, 2003; Bottasso et al., 2002).
In this case, the Energy Decaying scheme is third order accurate (but the number of equations to be solved

is multiplied by 2) and the numerical dissipation can be controlled.

All the conserving methods described above were established for hyperelastic materials. In a previous

work (Noels et al., 2004), we have developed a new expression of the internal forces, ensuring the con-

servation laws of the mechanics for a hypoelastic constitutive model. But, in this formulation, assuming

small time step size, we have neglected the second order term on the increment of the plastic strain. In this

paper, we prove that with the use of large time steps (according to the plastic deformation rate), those terms

are necessary to obtain an accurate and a stable solution. In Section 2, the methodology for the evaluation
of the stress tensor in hypoelastic materials and its spatial integration is recalled. In Section 3 we show how

to compute the internal forces to verify the conserving relations for a hypoelastic material using the final

rotation scheme. Moreover, we prove that this adaptation remains consistent when plastic deformation

occurs. Finally, in Section 4, numerical examples illustrate the advantages and the disadvantages of the

conserving algorithm, considering or not the second order terms.
2. The hypoelastic material model

First, the notations used in this paper are detailed. Next, the method used for computation of the stress

tensor in hypoelastic materials is explained. The plastic deformations are taken into account. Finally, the

spatial integration of this stress tensor to obtain the internal forces is established in a finite element

framework.

2.1. Preliminaries

Let the configuration n be the configuration computed after n time steps (i.e. at time tn). Let ~xxn be the

deformation mapping (coordinates) in the configuration n, and let ½~xxn�n be the coordinates of the position

for node n (n 2 ½1;N � with N the number of nodes of the element) in the configuration n. With un the shape
function evaluated related to node n, it comes (Einstein�s notations are used)
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~xx ¼ un~xxn

_~xx~xx ¼ un _~xx~xxn

€~xx~xx ¼ un€~xx~xxn
ð1Þ
The gradient of deformation (two point tensor) F between configurations m and n is indicated by Fn
m. This

tensor is defined by
Fn
m ¼ o~xxn

o~xxm
ð2Þ
Tensor f represents F�1. When m refers to the initial configuration, the gradient of deformation is written as
Fn
0 ¼

o~xxn

o~xx0
ð3Þ
with
Fn
0 ¼ Fn

mF
m
0 ð4Þ
According to the theorem of polar decomposition, this gradient tensor can be decomposed into a rotation

tensor R and a symmetric positive definite deformation tensor U (I is the identity tensor)
Fn
m ¼ Rn

mU
n
m

Un
m ¼ UnT

m

RnT

m Rn
m ¼ I

ð5Þ
The determinant of Fn
m is denoted by scalar Jn

m. The relation between density q of the body and this de-
terminant is
qn ¼ q0

Jn
0

ð6Þ
Green–Lagrange strain tensor GLn
m is defined as
GLn
m ¼ 1

2
½FnT

m Fn
m � I� ¼ 1

2
½Un

mU
n
m � I� ð7Þ
and Almansi strain tensor An
m is defined as
An
m ¼ 1

2
½I� fn

T

m fnm� ¼ fn
T

m GLn
mf

n
m ¼ 1

2
Rn

m½I�Un�1

m Un�1

m �RnT

m ð8Þ
Natural strain tensor En
m is also computed from F or might be computed from GL or from A
En
m ¼ 1

2
ln½FnT

m Fn
m� ¼ 1

2
ln½2GLn

m þ I� ¼ �1
2
ln½I� 2RnT

m An
mR

n
m� ð9Þ
The Cauchy stress tensor is evaluated in the configuration n and is referred to as Rn. If the internal forces

are pushed backward into the initial configuration, the stress tensor used is the second Piola–Kirchhoff

tensor (S), that is evaluated with respect to configuration n, as
Sn ¼ Jn
0 f

n
0R

nfn
T

0 ð10Þ
2.2. Stress tensor computation

By definition, for a hyperelastic material, there exists a potential /ðGLÞ from which the second Piola–

Kirchhoff stress tensor is computed
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Sn ¼ q0 o/ðGLn
0Þ

oGLn
0

ð11Þ
For hypoelastic constitutive laws, the Cauchy stress tensor is computed from a stress increment DRnþ1
n

between two successive configurations. The final rotation scheme (Nagtegaal, 1982; Nagtegaal and Veld-
paus, 1982, 1984; Ponthot, 1995, 2002) is defined by the following relation:
Rnþ1 ¼ Rnþ1
n ½Rn þ DRnþ1

n �Rnþ1T

n ð12Þ
Let us define, with an exponent c, the corotational value that is the term before the final rotation scheme.
For example, the corotational stress is defined by
Rcnþ1 ¼ Rn þ DRnþ1
n ð13Þ
This scheme presents some important properties:

• It is incrementally objective (i.e. the stress tensor is exactly updated for a rigid body motion).

• No parasitic volume variation is generated (i.e. the scheme does not lead to a variation of the volume for

a rigid motion).

If the material behavior is elastic, the stress increment is deduced from the natural strain tensor
DRnþ1
n ¼ H : Enþ1

n ð14Þ
with H denoting the Hooke fourth order tensor (k is the bulk modulus and g the shear modulus)
Hijkl ¼ kdijdkl þ g½dikdjl þ dildjk � 2
3
dijdkl� ð15Þ
and operation H : E is defined by HijklEkl. For an elastoplastic or elastoviscoplastic material, relation (12)

and relation (14) can only be directly used when the material remains elastic. If plastic deformations occur,

the relation (12) becomes
Rcnþ1 ¼ ½Rn þ DRnþ1
n � sc� ð16Þ
where sc is the purely deviatoric correction tensor resulting from the radial return mapping (J2 plasticity)

(Wilkins, 1964; Maenchen and Sack, 1964; Simo and Hughes, 1998; Ponthot, 2002). It is evaluated by the

following method: the elastic predictor se is defined by the deviatoric part of Rn þ DRnþ1
n where DRnþ1

n is

given by (14). If a defines the heredity backstress tensor, corotational normal tensor Nc is defined by
Nc ¼ se � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½se � a� : ½se � a�

p ð17Þ
where operation a : b is defined by aijbij. If scalar ep defines the equivalent plastic strain, if scalar Rv,

function of ep, defines the subsequent von Mises yield stress, and if �aa, function of ep, defines the equivalent
heredity, then scalar c can be defined such as to have (Ponthot, 1995, 2002)
ep
nþ1 ¼ ep

n þ
ffiffi
2
3

q
c

Rnþ1
v ðepnþ1Þ ¼ Rnþ1

v ðcÞ

ac
nþ1 ¼ an þ

ffiffi
2
3

q
½�aaðepnþ1Þ � �aaðepnÞ�Nc

sc ¼ 2gcNc

ð18Þ
where the scalar value of c is solved from the von Mises criterion (Ponthot, 2002) evaluated at time tnþ1,
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½se � 2gcNc � ac
nþ1ðcÞ� : ½se � 2gcNc � ac

nþ1ðcÞ� ¼ 2
3
½Rnþ1

v ðcÞ�2 ð19Þ
Let us note that we have the following relations after the final rotation scheme:
Rnþ1 ¼ Rnþ1
n Rcnþ1

Rnþ1T

n

Nnþ1 ¼ Rnþ1
n Ncnþ1

Rnþ1T

n

anþ1 ¼ Rnþ1
n ac

nþ1

Rnþ1T

n

ð20Þ
Now we will establish the expression for the internal forces in terms of the Cauchy stress tensor.

2.3. Internal forces formulation

Let V � R3 be the volume of the body and S be the surface bounding V . Each nodes of V is referenced by

its initial positions~xx0 2 R3. The initial velocities are denoted _~xx~xx0ð~xx0Þ. Surface S is decomposed into a part S~xx
where the displacements are imposed and a part S~tt where the loads are imposed (could be imposed to be
null). We always have S~xx [ S~tt ¼ S and S~xx \ S~tt ¼ 0.

Let t be the time and T ¼ ½0; tf � be the time interval of integration. Let~�xx�xxðtÞ be the imposed positions on

the part S~xx. Let d~xxð~xx0; tÞ be an admissible virtual trajectory with d~xxð~xx0; tÞ ¼ 0 for ~xx0 2 S~xx and

d~xxð~xx0; t ¼ 0Þ ¼ 0 and d~xxð~xx0; t ¼ tf Þ ¼ 0 for each~xx0 2 V0. Let~bb be the volumetric forces and~tt be the surface
tractions imposed on S~tt.

Then the following quasi-variational principle (principle of virtual power of forces) must hold (Antman,

1995):
Z tf

0

Z
V

q _~xx~xx � _d~xxd~xx

"(
� RT :

od~xx
o~xx

þ q~bb � d~xx
#
dV þ

Z
S~tt

½~tt � d~xx�dS
)
dt ¼ 0 8d~xx admissible ð21Þ
where operation ~aa �~bb is defined by ~aai~bbi. Integrating by part, one gets
Z tf

0

Z
V

q€~xx~xx � d~xxþ RT :
od~xx
o~xx

� q~bb � d~xx
� �

dV �
Z
S~tt

½~tt � d~xx�dS
( )

dt ¼ 0 8d~xx admissible ð22Þ
Therefore, it leads to
dKn þ dW n
int ¼ dW n

ext 8t 2 ½0; tf � ð23Þ
with dWint, dWext and dK respectively the virtual work of internal forces, the virtual work of external forces

and the virtual work of inertia forces, defined by
dK ¼
Z
V
fq€~xx~xx � d~xxgdV

dWext ¼
Z
V
fq~bb � d~xxgdV þ

Z
S~tt

f~tt � d~xxgdS

dWint ¼
Z
V

RT :
od~xx
o~xx

� �
dV

ð24Þ
To integrate Eq. (23) through time, the time interval T is decomposed into partitions ½tn; tnþ1� (such as

T ¼
SN

n¼0½tn; tnþ1�) with Dt ¼ tnþ1 � tn the time step size. Therefore, superscripts n and nþ 1 are respectively

used to denote a value at time tn or at time tnþ1. Using (1), (6), the mass conservation law (i.e.
qn dVn ¼ q0 dV0) and the spatial discretization of the virtual displacement (i.e. d~xx ¼ und~xxn), the virtual work
of the inertia forces at time tn can be rewritten as
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dKn ¼
Z
V0

fq0unulgdV0½€~xx~xxn�l � d~xxn ¼ Mnl½€~xx~xxn�l � d~xxn ð25Þ
where Mnl is the mass matrix component relative to nodes n and l. The virtual work of external forces is

expressed as
dW n
ext ¼

Z
V0

fq0
~bbnungdV0 � d~xxn þ

Z
Sn
~tt

f~ttnun
SgdS � d~xxn ¼ ½~FF n

ext�
n � d~xxn ð26Þ
with uS the shape functions of the surface. Finally, the internal forces variation can be rewritten as
dW n
int ¼

Z
V0

RnT oun

o~xxn

� �T
Jn
0

( )
dV0 � d~xxn ¼

Z
V0

RnTfn
T

0
~DDnJn

0

n o
dV0 � d~xxn ð27Þ
where ~DD is the derivative of the shape function (in the reference configuration, i.e. ~DDn ¼ oun

o~xx0 ).

Using relations (25)–(27), the balance equation at node n for the configuration n leads to
Mnl½€~xx~xxn�l ¼ ½~FF n
ext �~FF n

int�
n ð28Þ
with the expression of internal forces given by
½~FF n
int�

n ¼
Z
V0

RnTfn
T

0
~DDnJn

0

n o
dV0 ð29Þ
3. The energy momentum conserving scheme

First the mid-point scheme presented by Simo and Tarnow (1992) is briefly recalled. We explain how to

solve it with a predictor–corrector algorithm using Newton–Raphson iteration associated with a line search

algorithm. Next an internal force formulation is proposed for an hypoelastic model verifying the conser-

vation laws. The implementation of this formulation for a pressure under-integrated element is also

explained.
3.1. The mid-point scheme

For an integration from time tn to time tn þ Dt ¼ tnþ1, the relations between positions, velocities and

accelerations are given by
~xxnþ
1
2 ¼~xxnþ1 þ~xxn

2

_~xx~xxnþ
1
2 ¼~xxnþ1 �~xxn

Dt
¼

_~xx~xxnþ1 þ _~xx~xxn

2

€~xx~xxnþ
1
2 ¼

_~xx~xxnþ1 � _~xx~xxn

Dt
¼

€~xx~xxnþ1 þ €~xx~xxn

2

ð30Þ
These relations give _~xx~xxnþ
1
2, _~xx~xxnþ1, €~xx~xxnþ

1
2 and €~xx~xxnþ1 from values at time tn and from~xxnþ1. Positions~xxnþ1 are obtained

from the balance law for node n that is applied at the fractional step nþ 1
2
,

Mnl½€~xx~xxnþ1
2�l ¼ ~FF

nþ1
2

ext

h
�~FF

nþ1
2

int

in
ð31Þ
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Let ~FF nþ1
2ð~xxn;~xxnþ1Þ be the expression of the forces in configuration nþ 1

2
. This expression depends both on the

position in configuration n (i.e.~xxn) and nþ 1 (i.e.~xxnþ1). The goal of the following section is to evaluate it for

hypoelastic models. The system (30) and (31) can be resolved by a predictor–corrector algorithm. The

predicted values (denoted iteration 0 at configuration nþ 1) are obtained from the relations (30) with €~xx~xxnþ1

supposed to be null (these are generally the most efficient values (G�eeradin and Rixen, 1994; G�eeradin and

Cardona, 2000) to reach the balanced solution)
~xxnþ1;0 ¼~xxn þ Dt _~xx~xxn þ Dt2

4
€~xx~xxn

_~xx~xxnþ1;0 ¼ _~xx~xxn þ Dt
2
€~xx~xxn

€~xx~xxnþ1;0 ¼ 0

ð32Þ
Residual for Newton–Raphson iteration i at configuration nþ 1 is expressed as
D~FF in ¼ 1
2
Mnl½€~xx~xxnþ1;i þ €~xx~xxn�l þ ~FF

nþ1
2

int ð~xxnþ1;iÞ
h

�~FF
nþ1

2
ext ~xxnþ1;i

� �in
ð33Þ
Then, the corrections for iteration iþ 1 at configuration nþ 1 are evaluated as
Knli þ 2

Dt2
MnlI

� �
D~xxiþ1l ¼ �D~FF in

~xxnþ1;iþ1
� 	l ¼ ~xxnþ1;i

�
þ alsD~xxiþ1

	l
_~xx~xxnþ1;iþ1

h il
¼ _~xx~xxnþ1;i þ 2

Dt
alsD~xxiþ1

� �l
€~xx~xxnþ1;iþ1

h il
¼ €~xx~xxnþ1;i þ 4

Dt2
alsD~xxiþ1

� �l
ð34Þ
where Knl is the tangent stiffness matrix
Knl ¼
o ~FF

nþ1
2

int

h in
o~xxnþ1½ �l �

o ~FF
nþ1

2
ext

h in
o~xxnþ1½ �l ð35Þ
and als is the line search parameter reached by an iterative system (Matthies and Strang, 1979). The con-

vergence of the line search system is obtained when the following relation is verified (Tolls is the tolerance

specified for each numerical example):
kD~FF nð~xxnþ1;i þ alsD~xxiþ1Þ � D~xxiþ1nk < Tolls ð36Þ
Eqs. (34) are solved iteratively until convergence of the iterations occurs, i.e. until
D~FF iþ1n � D~FF iþ1n

~FF
nþ1

2

int ðxnþ1Þ
h in

� ~FF
nþ1

2

int ð~xxnþ1Þ
h in

þ ~FF
nþ1

2
ext ð~xxnþ1Þ

h in
� ~FF

nþ1
2

ext ð~xxnþ1Þ
h in < Tol ð37Þ
where Tol is a user defined tolerance specified for each numerical example. In Eq. (31) the explicit form of
~FF

nþ1
2

int has not been given. In the subsequent section an expression for ~FF
nþ1

2

int will be tailored so that it verifies
the conservation conditions.
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3.2. The internal forces expression for hypoelastic materials

If the expression of the internal forces is evaluated at ~xxnþ
1
2, the volume will then be evaluated for an

intermediate configuration that will introduce a parasitic volume change. Moreover, the conservation re-

lations are generally not verified. Therefore, the following expression for ½~FF nþ1
2

int � is proposed
~FF
nþ1

2

int

h in
¼ 1

2
~FF �
int

�
þ~FF ��

int

	n
½~FF �

int�
n ¼ 1

2

Z
V0

n
½Iþ Fnþ1

n �½RnT þ C��fnT0 ~DDnJn
0

o
dV0

½~FF ��
int �

n ¼ 1
2

Z
V0

n
I½ þ fnþ1

n

	
½Rnþ1T þ C���fnþ1T

0
~DDnJnþ1

0

o
dV0

ð38Þ
where C� and C�� are two symmetric tensors that are equal to zero if no plastic deformation occurs, and
that will be determined later if plastic deformation occurs. These tensors were neglected in our previous

work (Noels et al., 2004). The stress tensors are evaluated by the final rotation scheme combined with the

radial return mapping (see Section 2.2). The stress tensor in configuration nþ 1 is evaluated from the stress

tensor in configuration n. Therefore, the scheme remains incrementally objective. Moreover, in relation

(38), the stress tensors are always integrated over their respective volume (through J ). Therefore, no par-

asitic volume variations are induced. Now, we will demonstrate that relation (38) verifies the conservation

laws.

Eq. (31) has to verify the linear and angular momentum conservation, and the energy balance. The first
two conditions result from the physical laws assuming that the internal forces cannot change the rigid

motion of a body. The last condition assumes that the total mechanic (kinematic and potential) energy of

a system without external loading is preserved for a reversible transformation and is decreasing for an

irreversible transformation.

3.2.1. The linear momentum conservation

Let ~LL be the vector (first order tensor) discrete linear momentum
~LL �
X
n

Mnl _~xx~xxl ð39Þ
where we have kept the convention of summing over repeated indices. The conservation of ~LL over a time

step is discretized in
~LLnþ1 �~LLn ¼ Dt
X
n

~FF
nþ1

2
ext

h in
ð40Þ
By performing a sum over n in Eq. (31), and using (30), it leads to
1

Dt

X
n

Mnl _~xx~xxnþ1
h

� _~xx~xxn
il

¼
X
n

~FF
nþ1

2
ext

h
�~FF

nþ1
2

int

in
1

Dt
~LLnþ1
�

�~LLn
	
¼

X
n

~FF
nþ1

2
ext

h
�~FF

nþ1
2

int

in ð41Þ
But, using the following properties of the shape functions (8i 2 ½1; 3�)

X
n

~DDn
i ¼

X
n

oun

o~xx0i
¼ 0 ð42Þ
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and the definition of ~FF
nþ1

2

int (38), the relation (41) is reduced to (40), which proves the conservation of the

linear momentum.
3.2.2. The angular momentum conservation

Let ~JJ be the first order tensor (vector) discrete angular momentum defined by the following vector

product:
~JJ � Mnl½~xxn ^ _~xx~xxl� ð43Þ
The conservation of ~JJ over a time step is discretized in
~JJnþ1 �~JJn ¼ Dt½~xxnþ1
2�n ^ ~FF

nþ1
2

ext

h in
ð44Þ
The vector product of~xxnþ
1
2 by relation (31) gives
Mnl½~xxnþ1
2�n ^ ½€~xx~xxnþ1

2�l ¼ ½~xxnþ1
2�n ^ ~FF

nþ1
2

ext

h
�~FF

nþ1
2

int

in
ð45Þ
Using relations (30), this last expression leads to
1

Dt
Mnl ½~xxnþ1�n ^ ½ _~xx~xxnþ1�l

n
� ½~xxn�n ^ ½ _~xx~xxn�l

o
¼ ½~xxnþ1

2�n ^ ~FF
nþ1

2
ext

h
�~FF

nþ1
2

int

il
1

Dt
½~JJnþ1 �~JJn� ¼ ½~xxnþ1

2�n ^ ~FF
nþ1

2
ext

h in
� ½~xxnþ1

2�n ^ ~FF
nþ1

2

int

h in ð46Þ
Let us consider ð~FF �
intÞ

n
i from relation (38). Let � be the third order permutation tensor such that, for each

vector ~aa and ~bb, it comes ð~aa ^~bbÞ ¼ � : ½~aa�~bb�, with operation ½~aa�~bb�ij ¼~aai~bbj. Therefore, it leads to
2½~xxnþ1
2�n ^ ½~FF �

int�
n ¼ � :

n
½~xxnþ1 þ~xx�n � ~FF �

int

� 	no
¼ 1

2
� :

h
~xxnþ1

n
þ~xxn�n �

Z
V0

n
I½ þ Fnþ1

n

	
½RnT þ C��fnþ1T

0
~DDnJn

0

o
dV0

o
ð47Þ
Using (2) and (4) yields
½~xxn�n � fn
T

0
~DDn

h i
¼ I

~xxnþ1
� 	n � fn

T

0
~DDn

h i
¼ Fnþ1T

n

ð48Þ
Thanks to relations (48) and the fact that R is symmetric, relation (47) becomes
4½~xxnþ1
2�n ^ ~FF �

int

� 	n ¼ � :

Z
V0

n
I½ þ Fnþ1

n

	
Rn½ þ C�� I½ þ Fnþ1

n

	T
Jn
0

o
dV0 ¼

Z
V0

f� : HJn
0 gdV0 ¼ 0 ð49Þ
where H ¼ ½Iþ Fnþ1
n �½Rn þ C��½Iþ Fnþ1

n �T is a symmetric tensor (assuming that both R and C� are symmetric

tensors), and � is an anti-symmetric third order tensor. Therefore � : H is equal to zero. The same process
with ~FF ��

int also leads to
½~xxnþ1
2�n ^ ½~FF ��

int �
n ¼ 0 ð50Þ
Finally, using relations (48) and (49), Eq. (46) is reduced to (44) and the conservation of the angular

momentum is verified.
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3.2.3. The energy balance

Let E, Wint, Wext and K respectively be the total energy, the internal energy, the external energy and the

kinematic energy. It comes
E ¼ K þ Wint � Wext ð51Þ

The energy balance over one time step is discretized in
Enþ1 � En ¼ �Dint ð52Þ

with Dint P 0 the dissipation during the time step from configuration n to nþ 1. The scalar product of _~xx~xxnþ

1
2

and of relation (31) leads to (using relation (30))
Mnl½€~xx~xxnþ1
2�l � ½ _~xx~xxnþ1

2�n ¼ ~FF
nþ1

2
ext

h
�~FF

nþ1
2

int

in
� ½ _~xx~xxnþ1

2�n

�Mnl

2Dt
½ _~xx~xxnþ1�n � ½ _~xx~xxnþ1�l

n
� ½ _~xx~xxn�n � ½ _~xx~xxn�l

o
¼ 1

Dt
~FF

nþ1
2

ext

h
�~FF

nþ1
2

int

in
� ~xxnþ1
�

�~xxn�n ð53Þ
or
Knþ1 � Kn þ ~FF
nþ1

2

int

h in
� ~xxnþ1
�

�~xxn�n ¼ W nþ1
ext � W n

ext ð54Þ
First ~FF �
int (38) is included in (59). Using (2) and (4), it comes
~xxnþ1
�

�~xxn�n � ~FF �
int

� 	n ¼ 1

2
~xxnþ1
�

�~xxn�n �
Z
V0

�
Iþ Fnþ1

n � Rn þ C�½ �fnT0 ~DDnJn
0

n o
dV0

¼ 1

2

Z
V0

Fnþ1T

n Fnþ1
n

hn
þ Fnþ1

n � Fnþ1T

n � I
i
: ½Rn þ C��Jn

0

o
dV0 ð55Þ
Since Rþ C� is symmetric, one has
Fnþ1T

n : ½Rn þ C�� � Fnþ1
n : ½Rn þ C�� ¼ 0 ð56Þ
Using (7) and (56), the relation (55) becomes
~xxnþ1
�

�~xxn�n � ~FF �
int

� 	n ¼ Z
V0

fGLnþ1
n : ½Rn þ C��Jn

0 gdV0 ð57Þ
For ~FF ��
int the same process leads to
~xxnþ1
�

�~xxn�n � ~FF ��
int

� 	n ¼ Z
V0

fAnþ1
n : ½Rnþ1 þ C���Jnþ1

0 gdV0 ð58Þ
and finally, using relations (54), (57) and (58), the relation of the energy conservation (52) is reduced to
W nþ1
int � W n

int þ Dint ¼
1

2

Z
V0

fGLnþ1
n : ½Rn þ C��Jn

0 þ Anþ1
n : ½Rnþ1 þ C���Jnþ1

0 gdV0 ð59Þ
This last equation is the one which should be verified if we require the time integration algorithm to be

energy conserving. From this point, for a hyperelastic material, a potential / could be written to evaluate

the internal energy as demonstrated by Meng and Laursen (2001). However, for a hypoelastic material, no

potential can be defined unless the transformations are supposed to be infinitesimal. In this special case,

relation (59) is directly verified as demonstrated by Noels et al. (2004). In the large transformation case, we

will proceed as follow. Let us imagine a virtual loading–unloading cycle, that takes place in two steps, from
configuration 1 to 2 and then from 2 to 3 (Fig. 1), such that initial Cauchy stress tensor R1 corresponds to

final Cauchy stress tensor R3 up to any arbitrary rotation Q (QTQ ¼ I and detQ ¼ 1),



Fig. 1. Definition of the loading–unloading cycle (1D analogy).
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R3 ¼ QR1QT ð60Þ
During the loading phase from configuration 1 to 2, we assume that plastic deformations occur, while the
transition from configuration 2 to configuration 3 corresponds to elastic unloading. Note that configuration

3 might be kinematically inadmissible for a whole body, but this is not of concern here since we are rea-

soning at the elementary volume level. The expression of internal forces (38) is consistent with the Druckers

Postulate (e.g. Lubliner, 1990) if the reversible work of the loading phase is recovered during the second

step (i.e. W 3
int � W 1

int ¼ 0). Therefore, if we assume that tensors C� and C�� are equal to zero if no plastic

deformation occur (i.e. during the second step), the energy balance (59) between the configurations 1 and 3

can be expressed as
Dint ¼ Dint
3
1 ¼

1

2

Z
V0

fGL2
1 : ½R1 þ C��J 1

0 þ A2
1 : ½R2 þ C���J 2

0 gdV0 þ
1

2

Z
V0

fGL3
2 : R

2J 2
0 þ A3

2 : R
3J 3

0 gdV0

ð61Þ
Let Eel2
1 be the elastic natural strain tensor defined such that
H : Eel2
1 � H : E2

1 � sc21 ð62Þ
Therefore we define Uel2
1 the symmetric tensor such that
Eel2
1 � 1

2
ln½Uel2

1U
el2
1� ð63Þ
The existence of Uel2
1 result from the symmetry of tensor Eel2

1. Elastic and plastic Green–Lagrange strain
tensor (respectively GLel2

1 and GLpl2
1), as elastic and plastic Almansi strain tensor (respectively Ael2

1 and Apl2
1)

are defined from Uel2
1

GLel2
1 � 1

2
Uel2

1U
el2
1 � I

� 	
GLpl2

1 � GL2
1 �GLel2

1

Ael2
1 � 1

2
R2

1 I�Uel2�1

1 Uel2�1

1

h i
R2T

1

Apl2
1 � A2

1 � Ael2
1

ð64Þ
As we have demonstrated in (Noels et al., 2004), relation (60), using relations (64) and the assumption that

H is constant, yields
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GL3
2 ¼ �Ael2

1

A3
2 ¼ �QGLel2

1Q
T

J 3
0 ¼ J 1

0

ð65Þ
Therefore, using relations (65), the relation (61) becomes
Dint ¼
1

2

Z
V 0

GLpl2
1 : R

1
�


þGL2
1 : C

�	J 1
0 þ Apl2

1 : R
2

�
þ A2

1 : C
��	J 2

0

�
dV0 ð66Þ
The relation (66) has to be related with a physical quantity. The positive internal plastic dissipation can be
expressed from a volumic dissipation Dint as
Dphy
int ¼

Z
V0

fDintgdV0 > 0 ð67Þ
Therefore, we can deduce tensors C� and C�� that lead to an energy conserving scheme
C� ¼
Dint

J1
0

� R1 : GLpl2
1

GL2
1 : GL2

1

GL2
1

C�� ¼
Dint

J2
0

� R2 : Apl2
1

A2
1 : A

2
1

A2
1

ð68Þ
These tensors are symmetric and are equal to zero when no plastic deformation occurs as assumed. If there

are plastic deformations, the dissipation is then equal to Dphy
int > 0. Moreover, we can prove that these

tensors are of second order in the plastic deformation increment. Relation (62) can be transformed, using

relation (9), relation (18) and a linearization of the logarithm mapping, as
H : Eelnþ1
n ¼ H : Enþ1

n � scnþ1
n

H : GLelnþ1
n ¼ H : GLnþ1

n þ O GLplnþ12

n

� 

� 2gcNc

ð69Þ
or as
H : Aelnþ1
n ¼ H : Anþ1

n þ O Aplnþ12

n

� 

� 2gcN ð70Þ
Using the fact that for J2 plasticity the traces of Nc and of N are equal to zero, the inversion of Hooke�s law
(relation (15)) yields
GLnþ1
n �GLelnþ1

n þ OðGLplnþ12

n Þ ¼ cNc

Anþ1
n � Aelnþ1

n þ OðAplnþ12

n Þ ¼ cN
ð71Þ
Therefore, the order of the relations (68) is
C� : GL2
1J

1
0 ¼ Dint � cNc : R1Jn

0 þ OðR1 : GLpl22

1 Þ
C�� : A2

1J
2
0 ¼ Dint � cN : R2J 2

0 þ OðR2 : Apl22

1 Þ
ð72Þ
But the specific time variation of energy due to the plasticity can be expressed as ðRv þ �aaÞ _eep=q (Adam,

2003). In this expression the equivalent heredity (�aa) is added to the equivalent von Mises stress to obtain the

effective equivalent stress. Therefore, the internal dissipation can be discretized on a time step (assuming

linear hardening)
D ¼ 1epnþ1f½Rnþ1 þ �aanþ1�Jnþ1 þ ½Rn þ �aan�Jng ð73Þ
int 2 n v 0 v 0
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With definition of c (18), e (18), N (17) and Rdevn defining the deviatoric part of Rn, the relation (19), at the

first order leads to
cNc : RnJn
0 ¼ cNc : RdevnJ n

0 ’ epnþ1
n Rn

v

�
þ �aan�Jn

0

cN : Rnþ1Jnþ1
0 ¼ cN : Rdevnþ1

Jnþ1
0 ’ epnþ1

n Rnþ1
v

�
þ �aanþ1

	
Jnþ1
0

ð74Þ
And finally, the sum of the two terms of expressions (72) leads to second order terms. Therefore, for small

increments of transformation, correction tensors C� and C�� are of the second order. The consistent tangent

stiffness matrix is developed in Appendix A. In this paper we will show the necessity of considering those

terms for large time step size increments.
3.3. Implementation of the internal forces

The implementation of expression (38) is described for a selective reduced integration (SRI) scheme

using one volumic Gauss point and several deviatoric Gauss points. Values referring to the volumic Gauss

point are denoted with a superscript V and values relative to a deviatoric Gauss point are denoted with a
superscript D. The deviatoric part of a tensor is denoted with superscript dev. The pressure of an element is

computed and integrated at a single volumic Gauss point to avoid volumic locking. Therefore, the ex-

pression of the internal force at this point is (with p ¼ kRii)
~FF
nþ1

2

int

h inV
¼ 1

4
I½ þ Fnþ1

n

	V
pn

V
I fn

T

0

h iV
½~DDn�V JnV

0 V0 þ 1
4
I½ þ fnþ1

n

	V
pnþ1V I fnþ1T

0

h iV
½~DDn�V Jnþ1V

0 V0 ð75Þ
The deviatoric part of the stress
Rdevnþ1 ¼ R½Rdevn þ 2gEdev � sc�RT ð76Þ
and the correcting tensors are integrated at the deviatoric Gauss points
~FF
nþ1

2

int

h inD
¼ 1

4
I½ þ Fnþ1

n

	D½Rdevn þ C��D fn
T

0

h iD
½~DDn�DJnD

0 V0

þ 1
4
I½ þ fnþ1

n

	D½Rdevnþ1 þ C���D fnþ1T

0

h iD
½~DDn�DJnþ1D

0 V0 ð77Þ
where the correcting tensors (68) are computed from the work done by the deviatoric stress and the volumic

pressure as
C� ¼

DD
int

Jn
D

0

� ½½Rdevn �D þ pn
V
I� : ½GLplnþ1

n �D

½GLnþ1
n �D : ½GLnþ1

n �D
½GLnþ1

n �D

C�� ¼

DD
int

Jnþ1D
0

� ½½Rdevnþ1 �D þ pnþ1V I� : ½Aplnþ1
n �D

½Anþ1
n �D : ½Anþ1

n �D
½Anþ1

n �D

ð78Þ
In these expressions, the plastic tensors are computed from relations (64) with Uel computed from relations

(62) and (63) where all the terms (Eel, E and sc) are evaluated at the deviatoric Gauss point D. Let us note
that for the 2D study of a plane strain deformation problem, the expression (78) is computed taking into

account the fact that tensors Rdev, GLplnþ1
n and Aplnþ1

n have an out-of-plane component different from zero.
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4. Numerical examples

In this section we compare the solution obtained with three methods:

• The results obtained with the proposed conservative scheme (EMCA) taking into account the correcting

tensors.

• The results obtained with the proposed conservative scheme (EMCA) without the correcting tensors.

• The Newmark algorithm (Newmark, 1959) (NMK) with the first Newmark parameter (b) equal to 0.25

and the second Newmark parameter (c) equal to 0.5.

For each problem, the time step size is constant to avoid any instabilities resulting from a time step size

variation. Each simulation is achieved with different time step sizes to show the influence of the use of the
correcting tensors on the stability of the solution.

For the hypoelastic material, the internal energy is not directly accessible. Therefore, the total energy is

computed from the work of internal forces. For the conservative algorithm, the total energy at time tnþ1 is

defined as
Enþ1 ¼ En þ Knþ1 � Kn þ ~FF
nþ1

2

int

h i
~xxnþ1
�

�~xxn� � W nþ1
ext þ W n

ext ð79Þ
with ~FF
nþ1

2

int computed from relation (38). For the Newmark algorithm, it is defined by
Enþ1 ¼ En þ Knþ1 � Kn þ 1

2
~FF n
int

�
þ~FF nþ1

int

	
~xxnþ1
�

�~xxn� � W nþ1
ext þ W n

ext ð80Þ
with ~FF n
int defined from relation (29). This total energy evaluation includes the internal dissipation and must

thus remains constant for each problem. The internal dissipation is evaluated from relations (67) and (73).

The finite elements used for each example are 8-noded trilinear bricks with eight deviatoric Gauss points

and one volumic Gauss point.
4.1. Example 1: traction/shearing of a 2D-element

First, we will study the influence of the time step size for a problem with no degree of freedom (i.e. where

the displacement of all nodes are prescribed). This methodology allows us to evaluate the influence of the

correcting terms. It consists of the deformation (traction and shearing) of a plane strain 2D-element. The

path of deformation is illustrated in Fig. 2. Properties of the material are reported in Table 1. The simu-

lation occurs in 1 s and is achieved with five different constant time step sizes (0.5, 0.25, 0.1, 0.05 and 0.025

s). Fig. 3(a) illustrates the final value (after 1 s) of the work done by the internal forces and Fig. 3(b)

illustrates the error (referring to the value obtained with the EMCA algorithm and the correcting tensors
for a time step size equal to 0.025 s) on the final value. To be pertinent with the order of the correcting

tensor, the abscissa axis (logarithmic scale) represents the maximal increment of the equivalent plastic strain

during the simulation and not the value of the time step size. Since the error is represented with a loga-

rithmic scale, we can see that the error is of the second order (which is the order of the error of the finite

element method integration) and that the most accurate solution is the conservative scheme with the

correcting tensors (error lower of 1% even for an equivalent plastic strain increment of 0.83). To have the

same error, the time step size (or the maximal equivalent plastic strain increment) must be five times smaller

if the correcting tensors are neglected, and must be three times smaller if the Newmark algorithm is used.
Once the error of the different algorithms known, we will show the influence of the correcting terms on the

stability (convergence rate. . .) of the integration.



1.27

0.
88

9

3
dis

pla
ce

men
t

dis
pla

ce
men

t

45˚

Fig. 2. Deformation of the 2D-element (length in meter): solid lines correspond to initial configuration and dotted lines correspond to

final configuration.

Table 1

Material properties of the 2D-element

Property Value

Density q ¼ 8930 kg/m3

Young�s modulus E ¼ 206:9E9 N/m2

Poisson�s ratio m ¼ 0:29

Yield stress r0 ¼ 450 N/mm2

Hardening parameter h ¼ 129:4 N/mm2
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Fig. 3. Internal forces work: (a) final work, (b) error on the final work computation.
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4.2. Example 2: impact of two cylinders

This problem, treated here with an hypoelastic material, was first presented by Meng and Laursen (2002)

for an hyperelastic material. It consists in one cylinder that impacts, with an initial velocity, another



Table 2

Geometrical and material properties of the two cylinders

Property Value

Radius R ¼ 1 m

Distance between the two centers (x-axis; y-axis) x¼ (2.18 m; 0 m)

Initial velocity of the left cylinder (x-axis; y-axis) _xx¼ (1 m/s; )0.1 m/s)

Density q ¼ 8:93 kg/m3

Young�s modulus E ¼ 119:158 N/m2

Poisson�s ratio m ¼ 0:375

Yield stress r0 ¼ 10 N/m2

Hardening parameter h ¼ 0 N/m2

Contact penalty pn ¼ 104

Fig. 4. Mesh of the two cylinders.
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cylinder that is initially at rest. The two cylinders are identical (properties reported in Table 2 and mesh
illustrated in Fig. 4). The frictionless contact is classically treated for the Newmark algorithm and is treated

with the method proposed by Armero and Pet€oocz (1999) for the conserving algorithm. The simulation

occurs in 4 s and the different time step sizes tested are: 15, 7.5, 3.75 and 1.875 ms. Let us note that for the

Newmark algorithm, and the time step size equal to 0.015 s, a penalty parameter of 104 does not lead to

convergence (it did not lead to convergence in the paper of Meng and Laursen (2002) either). Therefore, a

penalty of 103 was used in this particular case, and a penalty of 104 for the other cases––same values as in

Meng and Laursen (2002).

Fig. 5 illustrates deformations and the equivalent plastic strain for the final configurations (t ¼ 4 s). For
the EMCA algorithms, the differences between the simulations occurring with different time step sizes, are

lower than 5%. This difference is due to the non-smooth contact simulation that allows penetration of the

surface. When using the Newmark method, the solution is radically different (little difference in the

equivalent plastic strain distribution for Dt ¼ 3:75 ms but more than 100% error for larger time step sizes).

Fig. 6(a) and (b) represent the energy dissipated by plastic deformation. As mentioned previously, if the

time step size is increased by a factor of 8, the Newmark simulation leads to a 100% different solution. For

the same increase, the conserving algorithms with the correcting tensor lead to the same solution while if

these tensors are neglected, the solution becomes 0.5% different. Let us note that our solution is similar with
an error of 10% to the Meng and Laursen (2002) solution, difference resulting from constitutive law (our

equivalent yield stress is computed from the Cauchy stress that depends on the compression of the volume).

The angular momentum evolution for a time step size equal to 0.015 s is illustrated in Fig. 7. Only the

Newmark solution exhibits some oscillations. The total number of iterations for the Newton–Raphson

scheme, reached with a tolerance of 10�6 (37) for equilibrium, and for the line search system, reached with a

tolerance of 10�3 (36), are reported respectively in Fig. 8(a) and (b). For the largest time step size (15 ms),

we can see that the correcting terms allow a reduction of about 25% in the iterations number of the line



Fig. 5. Final shape and equivalent plastic strain of the two cylinders.
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Fig. 6. Time evolution of the plastic dissipation for the two cylinders: (a) from t ¼ 0 s to t ¼ 3 s, (b) from t ¼ 0:75 s to t ¼ 2 s.
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search. The Newmark algorithm is always cheaper than the EMCA algorithms but leads to wrong solutions

when the time step size is larger than 1.875 ms.
4.3. Example 3: the Taylor bar problem

It consists in a cylindrical bar (Table 3), discretized by 576 elements (Fig. 9). It has an initial velocity _xx0.
The simulation occurs in 80 ls and the different time step sizes tested are: 0.5, 0.25, 0.1 ls. Fig. 10(a) and (b)

illustrate respectively the energy plastically dissipated after 80 ls for the different time step sizes, and the

error on this energy (related to the simulation with the corrections and a time step equal to 0.1 ls). As in

Example 1, when the time step size increases, the energy is overestimated. The use of the EMCA with the

correcting tensors allows reducing this overestimation. Fig. 11(a) and (b) illustrates respectively the elastic

stored energy obtained from the kinematic energy added to the internal forces work minus the dissipated

energy, and the error on this energy. Negative values of the energy, which is absolutely non-physical, are

obtained when the time step size increases except for the conserving algorithm using the correcting tensors.
This simulation is therefore the only one that leads to consistent results for each time step size. The final



Fig. 9. Discretization of the Taylor bar.

Fig. 10. Final energy (after 80 ls) for the Taylor bar: (a) dissipated energy, (b) error on the dissipated energy.

Table 3

Properties of the Taylor bar problem

Property Value

External diameter de ¼ 6:4 mm

Length l ¼ 32:4 mm

Density q ¼ 8930 kg/m3

Young�s modulus E ¼ 117E9 N/m2

Poisson�s ratio m ¼ 0:35

Yield stress r0 ¼ 400 N/mm2

Hardening parameter h ¼ 100 N/mm2

Initial velocity _xx0 ¼ 227 m/s
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total energy is reported in Fig. 12. It appears that the final energy is equal to the initial energy for all

schemes. Therefore we can conclude that, since the energy is computed from the work of the internal forces

(80), the Newmark algorithm conserves the total energy as demonstrated by Belytschko and Schoeberle

(1975) and Hughes (1977). But, for a non-linear system integrated with the Newmark scheme, the work of



Fig. 12. Final total energy (after 80 ls) for the Taylor bar.
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the internal forces does not correspond to the variation of internal energy added to the plastic dissipation,

leading to a repartition of energy not consistent with the physical dynamics. The errors illustrations (Fig. 10

and 11(b)) show that the conserving scheme with the correcting tensors always give the lower error, and

that it is second order in the time step size. Fig. 13 illustrates the equivalent plastic strain after 80 ls. As it

has appeared in Fig. 10, the differences between the methods and the time step sizes used are limited (lower

than 1%).
The total number of iterations for the Newton–Raphson scheme, reached with an equilibrium tolerance

of 10�8 (37), and for the line search system, reached with a tolerance of 10�5 (36), are respectively illus-

trated in Fig. 14(a) and (b). When the time step size is increased, the use of the Newmark algorithm and the

use of the conserving algorithm without the correcting tensor lead to an increase in the number of iter-

ations. This phenomenon could be explained by the lack of consistency that appears. But, when the

correcting tensor are introduced, the total number of iterations is reduced when the time step size increases.

For a time step size equal to 0.5 ls, taking into account these correcting tensors allows reducing the

number of iterations of the line search by about 50% and allows reducing the Newton–Raphson iterations
by about 20%.



Fig. 13. Final configuration and equivalent plastic strain (after 80 ls) for the Taylor bar.
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5. Conclusions

We have developed a new formulation of the finite element internal forces associated to the Cauchy

stress of an hypoelastic material. With a mid-point scheme, this formulation leads to a thermodynamically

consistent dynamics algorithm. The linear and angular momentum are conserved and the energy dissipation

corresponds to the physical dissipation resulting from the plastic deformations. In this formulation the
correction tensors, that are of the second order in the plastic strain increment and were neglected in our

previous work, are now taken into account. When the time step size increases (and the equivalent plastic

strain increment increases), neglecting these tensors could lead to a loss of consistency, usually accompa-

nied by an increase in the number of iterations. We have also compared the Newmark solutions with the

conserving algorithm ones. It clearly appears that for large time steps, the solutions can diverge, especially
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when contact interactions occur. Even when no contact occurs, the Newmark algorithm led to a loss of

accuracy and an increase of the iterations number when its time step size has been increased. We conclude

that the Newmark algorithm conserves the total energy but that the repartition of the energy is not con-

sistent with the physical dynamics in the non-linear range. Therefore, the developed formulation proved to

be necessary to integrate non-linear dynamics problems with large time steps.
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Appendix A. A consistent tangent stiffness matrix

The stiffness matrix defined in (38) will now evaluated for the new expression of the internal forces. First

the expression ~FF �
int is derived with respect to the positions at time tnþ1,
K�nl ¼ o½~FF �
int�

n

o½~xxnþ1�l

¼ 1

2

Z
V0

�
oFnþ1

n

o½~xxnþ1�l ½R
nT :þ C��fnT0 ~DDnJn

0

�
dV0 þ

1

2

Z
V0

�
½Fnþ1

n :þ I� oC�

o½~xxnþ1�l f
nT

0
~DDnJn

0

�
dV0 ðA:1Þ
With the relations (2) and (4), it leads to
oFnþ1
n

o½~xxnþ1�l ½R
nT þ C�� ¼ N1 	 ½~BBn�l ðA:2Þ
with first order tensor ½~BBn�l defined by ½~BBn�l ¼ fn
T

0
~DDl, with fourth order tensor N1 defined by N1

ijkl ¼
Iik½Rn

lj þ C�
jl�, and with operation ½~BBn�n 	N1 	 ½~BBn�l defined by
½~BBn�n 	N1 	 ½~BBn�l
h i

¼ ½~BBn�njN1
ijkl½~BBn�ll ðA:3Þ
ik
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Now let us study the derivation of C�. We can write
oC�

o½~xxnþ1�l ¼
o

Dint
Jn
0

�GLplnþ1
n :Rn

GLnþ1
n :GLnþ1

n
GLnþ1

n

" #

o½~xxnþ1�l ¼ C� 	 ½~BBn�l ðA:4Þ
Let us evaluate C�. With the relations (2) and (4), it leads to
oGLnþ1
n

o½~xxnþ1�l ¼ C�1 	 ½~BBn�l ðA:5Þ
with C�1
ijkl ¼ 1

2
½dil½Fnþ1

n �kj þ djl½Fnþ1
n �ki�. Using this results yields
o 1

GLnþ1
n :GLnþ1

n

h i
o½~xxnþ1�l GLnþ1

n ¼ C�2 	 ½~BBn�l ðA:6Þ
with C�2
ijkl ¼ � 2

½GLnþ1
n : GLnþ1

n �2
GLij½Fnþ1

n GLnþ1
n �kl.

Now let us assume that the derivation of the internal dissipation (that is material dependent and that will

be computed in Appendix B) can take the following formulation:
oDint

o½~xxnþ1�l ¼ Dint½~BBnþ1�l ¼ Dintf
nþ1T

n ½~BBn�l ðA:7Þ
Therefore, it leads to
oDint

o½~xxnþ1�l GLnþ1
n ¼ C�3 	 ½~BBn�l ðA:8Þ
with C�3
ijkl ¼ GLij½Dintf

nþ1T

n �kl.
To be able to derive the term GLplnþ1

n , it is decomposed into GLnþ1
n �GLelnþ1

n . Using (A.5) and the

symmetric property of R, the GLnþ1
n part becomes
� oGLnþ1
n

o½~xxnþ1�l : R
n

� �
GLnþ1

n ¼ C�4 	 ½~BBn�l ðA:9Þ
with C�4
ijkl ¼ �GLnþ1

n ij½Fnþ1
n Rn�kl. The GLelnþ1

n part is obtained using the definitions (62)–(64). With the

definition of the Hooke tensor (15), the definition of the plastic correction (18) and using the fact that for J2
plasticity the trace of Nc is equal to zero, it comes
Eelnþ1
n ¼ Enþ1

n � cNc

1
2
ln 2GLelnþ1

n

�
þ I� ¼ 1

2
ln 2GLnþ1

n

�
þ I� � cNc

GLelnþ1
n ¼ 1

2
exp ln 2GLnþ1

n

�

þ I� � 2cNcg � 1

2
I

ðA:10Þ
Assuming the norm of any four order tensor M remains close to zero, derivation of the exponential of M

can be approximated by
oexpM ’ 1
2
½oMexpMþ expMoM� ðA:11Þ
Therefore, it yields
2
o½GLelnþ1

n �ij
o½~xxnþ1�l ¼ o½ln½2GLnþ1

n þ I� � 2cNc�im
o½~xxnþ1�l 2GLelnþ1

n

�
þ I�mj

þ 2GLelnþ1
n

�
þ I�im

o ln 2GLnþ1
n þ I

� 	
� 2cNc

� 	
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o½~xxnþ1�l ðA:12Þ
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Let M be the forth order tensor defined by
Rnþ1
n

o H : Enþ1
n � 2gcNc

� 	
o½~xxnþ1�l Rnþ1T

n ¼ M 	 ½~BBnþ1�l ¼ M 	 fnþ1T

n ½~BBn�l ðA:13Þ
the expression of this tensor will computed in Appendix B. Using this definition, the relation (A.12) can be

rewritten as
2
o½GLelnþ1

n �ij
o½~xxnþ1�lk

¼ ½Rnþ1
n �pi H�1M

� 	
pqkn

½Rnþ1
n �qm½2GLel

n nþ 1þ I�mj½f
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n �ln½~BBn�ll
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n þ I�im½R

nþ1
n �pm H�1M

� 	
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½Rnþ1
n �qj½f

nþ1
n �ln½~BBn�ll ðA:14Þ
Let C5 be the matrix defined by RRnUel2RT. Using the symmetric properties of R, of Uel and the symmetric
properties

�
H�1M
� 	

ijkl
¼ H�1M

� 	
jikl

�
of the material tensor, relation (A.14) yields
oGLelnþ1
n
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GLnþ1

n ¼ C�5 	 ½~BBn�l ðA:15Þ
with C�5
ijkl ¼ GLnþ1

n ij C5 : H�1M
� 	
 �

kn
½fnþ1

n �ln, where ½M : H�kl is equal to MijHijkl. Finally, tensor C� de-

fined in relation (A.4) can be written, using relations (A.5), (A.6), (A.8), (A.9) and (A.15) as
C� ¼
Dint

Jn
0

�GLplnþ1
n : Rn

GLnþ1
n : GLnþ1
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Therefore, using the relations (A.2) and (A.4), the expression (A.1) becomes
K�nl ¼ 1
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Z
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f½~BBn�n 	K� 	 ½~BBn�lJn
0 gdV0 ðA:17Þ
with K�
ijkl defined by N1
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n þ I�imC�

mjkl.

Now the expression ~FF ��
int is derived with respect to the positions at time tnþ1,
K��nl ¼ o½~FF ��
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ðA:18Þ
The first part of relation (A.18) is evaluated. With relation of ¼ �foFf and using relations (2) and (4), it

leads to
ofnþ1
n

o½~xxnþ1�l ½R
nþ1T þ C��� ¼ �Fn

0f
nþ1
0

oFnþ1
0

o½~xxnþ1�l f
nþ1
0 ½Rnþ1T þ C��� ¼ N2 	 ½~BBnþ1�l ðA:19Þ
with N2
ijkl ¼ �½fnþ1

n �ik½Rnþ1
lj þ C��

jl �. The second part of the relation (A.18) is evaluated through the deriva-
tion of Rnþ1,
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@Rnþ1
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o½Rnþ1
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o½~xxnþ1�l ¼ Rnþ1
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Using definition of M in relation (A.13), it leads to
Rnþ1
n

oRcnþ1

o½~xxnþ1�l R
nþ1T

n ¼ Rnþ1
n

o½H : Enþ1
n � 2gcNc�

o½~xxnþ1�l Rnþ1T

n ¼ M 	 ½~BBnþ1�l ðA:21Þ
Moreover, we have (Ponthot, 1995; Nagtegaal and Veldpaus, 1984)
oRnþ1
n

o½~xxnþ1�l R
nþ1T

n ’ J1 	 ½~BBnþ1�l

Rnþ1
n

oRnþ1T

n

o½~xxnþ1�l ’ �J1 	 ½~BBnþ1�l
ðA:22Þ
with J1 ¼ 1
2
½dikdjl � dildjk�. Therefore, if we denote by JðMÞ the Jaumann four order tensor such that
½JðMÞ�ijkl ¼ 1
2
½Mildjk �Mikdjl þMjldik �Mkjdil� ðA:23Þ
the relation (A.20) can be rewritten, using relations (A.21) and (A.22) as
oRnþ1

o½~xxnþ1�l ¼ M
�

þJðRnþ1Þ
	
	 ½~BBnþ1�l ðA:24Þ
Let us note that for the implementation described in Section 3.3, this term is decomposed into a tensor

relative to the volumic point (pressure) and into a tensor relative to the deviatoric points (deviatoric stress).

So the ~BB vectors depend on the Gauss point at which the values are computed. Now the third part of

relation (A.18) is developed. We can write
oC��

o½~xxnþ1�l ¼
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Dint
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�Aplnþ1
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n :Anþ1

n
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Let us evaluate C��. With the relations (2) and (4), it leads to
oAnþ1
n

o½~xxnþ1�l ¼ C��1 	 ½~BBnþ1�l ðA:26Þ
with C��1
ijkl ¼ 1

2
½dildjk þ dikdjl � 2dilAjk � 2djlAik�. Using this results yields
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ijkl ¼ AijDintkl. Moreover, we have
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with C��4
ijkl ¼ � 1

Jnþ1
0

Aijdkl. To be able to derive the term Aplnþ1
n , it is decomposed in Anþ1

n � Aelnþ1
n . Using

(A.26) and the symmetric properties of R, the Anþ1
n part becomes
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with C��5
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n ij½Rnþ1 � 2ARnþ1�kl (using the symmetric properties of R). The Aelnþ1
n part is obtained

using the definitions (62)–(64). With the definition of JðMÞ in relation (A.23), it leads
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The relation (A.14) can be rewritten as
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h i
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Combining relation (A.31) and (A.32) yields
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Therefore, defining
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and using the symmetric properties of R, Ael and H�1M, relation (A.33) leads to
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��6
kl . The last term of the expression (A.25), is directly obtained from relation (A.24)
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. And finally, using relations (A.26), (A.27), (A.28), (A.29), (A.30),

(A.35) and (A.36), tensor C�� defined in relation (A.25) becomes
C�� ¼
Dint

Jnþ1
0

� Aplnþ1

n : Rnþ1

Anþ1
n : Anþ1

n

2
4

3
5C��1 þ Dint

Jnþ1
0

� Aplnþ1

n : Rnþ1

� �
C��2 þ 1

Jnþ1
0 Anþ1

n : Anþ1
n

" #
C��3

þ Dint

Anþ1
n : Anþ1

n

" #
C��4 þ 1

Anþ1
n : Anþ1

n

" #
C��5 þ 1

Anþ1
n : Anþ1

n

" #
C��6 þ 1

Anþ1
n : Anþ1

n

" #
C��7 ðA:37Þ
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Finally, the forth term of relation (A.18) is easily obtained since
o½fnþ1T

0 DnJnþ1
0 �i

o½~xxnþ1�lk
¼ ½~BBnþ1�nj ½�djkdil þ dijdkl�½~BBnþ1�ll J nþ1

0 ðA:38Þ
Therefore, if we define GðMÞ, the geometric tensor, such that
GðMÞ ¼ �Mildjk þMijdkl ðA:39Þ
and thanks to relations (A.19), (A.24), (A.25) and (A.38) we can rewrite the relation (A.18) as
K��nl ¼ 1

2

Z
V0

�
½~BBnþ1�n 	K�� 	 ½~BBnþ1�lJnþ1

0

�
dV0 ðA:40Þ
with
K��
ijkl ¼ N2

ijkl þ fnþ1
n

�
þ I�im M

�
þJðRnþ1Þ þ C�� þ GðRnþ1 þ C��Þ�mjkl ðA:41Þ
The final expression of the stiffness matrix is obtained from relation (A.17) and from relation (A.40)
Knl ¼ o½~FFint�n

o½~xxnþ1�l ¼
1

4

Z
V0

f½~BBn�n 	K� 	 ½~BBn�lJn
0 þ ½~BBnþ1�n 	K�� 	 ½~BBnþ1�lJnþ1

0 gdV0 ðA:42Þ
Let us note that this stiffness matrix is not symmetric. Nevertheless, since the relation (A.23) gives a non-

symmetric four order tensor, the use of the Newmark scheme gives also a non-symmetric stiffness matrix.

Appendix B. Material tensors

Now we have to develop tensor M defined in relation (A.13) and tensor Dint defined in relation (A.7).

The material tensor can be found in Nagtegaal and Veldpaus (1984) and Ponthot (2002)
Mijkl ¼ kdijdkl þ g�½dildjk þ dikdjl � 2
3
dijdkl � 2l�NijNkl� ðB:1Þ
with g� ¼ bg and
b ¼
ffiffiffi
2

3

r
Rv nþ1 þ �aanþ1 � �aanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½se � a� : ½se � a�

p
l� ¼ g�

1þ h
3g�þ½b�1�h

h ¼ oRv

oep

nþ1

ðB:2Þ
Let us note that
H�1
ijmnMmnkl ¼ 1

3
dijdkl þ b½1

2
dildjk þ 1

2
dikdjl � 1

3
dijdkl � l�NijNkl� ðB:3Þ
To obtain tensor Dint, we have to derive relation (73)
oDint

o½~xxnþ1�l ¼
1

2
Rnþ1

v

�

þ �aanþ1

	
Jnþ1
0 þ Rn

v

�
þ �aan�Jn

0

� oepnþ1
n

o½~xxnþ1�l þ
1

2
hepnþ1

n

�
þ �aanþ1 � �aan�Jnþ1

0

oepnþ1
n

o½~xxnþ1�l

þ 1

2
Rnþ1

v

�
þ �aanþ1

	
epnnþ 1

oJnþ1
0

o½~xxnþ1�l ðB:4Þ
with (Nagtegaal and Veldpaus, 1984; Ponthot, 2002)
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oepnþ1
n

o½~xxnþ1�l ¼
ffiffi
2
3

q
½l�ðb� 1Þ þ 1�N½~BBnþ1�l ðB:5Þ
and with
oJnþ1
0

o½~xxnþ1�l ¼ Jnþ1
0 I½~BBnþ1�l ðB:6Þ
Therefore, it comes
Dint ¼ f½Rnþ1
v þ �aanþ1 þ ðhepnþ1

n þ �aanþ1 � �aanÞ�Jnþ1
0 þ Rn

v
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þ �aan�Jn

0 g12
ffiffi
2
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½l�ðb� 1Þ þ 1�N
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2
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�
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